Calcular numero combinatorio

Calcular numero combinatorio

Generador de todas las combinaciones posibles

Contar combinacionesContar permutacionesNúmero de puntos de muestra en el conjunto ( n )Número de puntos de muestra en cada combinación ( r )Número de combinaciones (n cosas tomadas r a la vez)Preguntas frecuentesCalculadora de combinaciones y permutaciones | Ejemplos de problemasInstrucciones: Para encontrar la respuesta a una pregunta frecuente
sobre las reglas de conteo o visite el Glosario de Estadística. La ayuda en línea está a un clic del ratón.¿Qué es una permutación? Una permutación es una disposición de todo o parte de un conjunto de objetos, con respecto al orden de la disposición.Por ejemplo, supongamos que tenemos un conjunto de tres letras: A, B y C.
Cada permutación consta de 2 letras, por lo que r = 2.Para un ejemplo que cuente las permutaciones, véase el Problema de muestra 1.¿Qué es una combinación? Una combinación es una selección de todo o parte de un conjunto de objetos, sin tener en cuenta el orden en que están
Para un ejemplo que cuenta el número de combinaciones, véase el Problema de muestra 2. ¿Cuál es la diferencia entre una combinación y una permutación? La distinción entre una combinación y una permutación

Calculadora de variaciones

En matemáticas, una combinación es una selección de elementos de una colección, de manera que el orden de selección no importa (a diferencia de las permutaciones). Por ejemplo, dadas tres frutas, digamos una manzana, una naranja y una pera, hay tres combinaciones de dos que se pueden extraer de este conjunto: una manzana y una pera; una manzana y una naranja; o una pera y una naranja.
Las combinaciones se refieren a la combinación de n cosas tomadas k a la vez sin repetición. Para referirse a las combinaciones en las que se permite la repetición, se suelen utilizar los términos k-selección,[1] k-multiset,[2] o k-combinación con repetición[3] Si, en el ejemplo anterior, fuera posible tener dos de cualquier tipo de fruta, habría otras 3 2-selecciones: una con dos manzanas, otra con dos naranjas y otra con dos peras.
Aunque el conjunto de tres frutas era lo suficientemente pequeño como para escribir una lista completa de combinaciones, esto se vuelve poco práctico a medida que aumenta el tamaño del conjunto. Por ejemplo, una mano de póquer puede describirse como una combinación de 5 cartas (k = 5) de una baraja de 52 cartas (n = 52). Las 5 cartas de la mano son todas distintas, y el orden de las cartas en la mano no importa. Hay 2.598.960 combinaciones de este tipo, y la probabilidad de sacar una mano cualquiera al azar es de 1 / 2.598.960.

Fórmula ncr

En matemáticas, una combinación es una selección de elementos de una colección, de manera que el orden de selección no importa (a diferencia de las permutaciones). Por ejemplo, dadas tres frutas, digamos una manzana, una naranja y una pera, hay tres combinaciones de dos que pueden extraerse de este conjunto: una manzana y una pera; una manzana y una naranja; o una pera y una naranja.
Las combinaciones se refieren a la combinación de n cosas tomadas k a la vez sin repetición. Para referirse a las combinaciones en las que se permite la repetición, se suelen utilizar los términos k-selección,[1] k-multiset,[2] o k-combinación con repetición[3] Si, en el ejemplo anterior, fuera posible tener dos de cualquier tipo de fruta, habría otras 3 2-selecciones: una con dos manzanas, otra con dos naranjas y otra con dos peras.
Aunque el conjunto de tres frutas era lo suficientemente pequeño como para escribir una lista completa de combinaciones, esto se vuelve poco práctico a medida que aumenta el tamaño del conjunto. Por ejemplo, una mano de póquer puede describirse como una combinación de 5 cartas (k = 5) de una baraja de 52 cartas (n = 52). Las 5 cartas de la mano son todas distintas, y el orden de las cartas en la mano no importa. Hay 2.598.960 combinaciones de este tipo, y la probabilidad de sacar una mano cualquiera al azar es de 1 / 2.598.960.

Cómo encontrar todas las combinaciones posibles

En matemáticas, una combinación es una selección de elementos de una colección, de manera que el orden de selección no importa (a diferencia de las permutaciones). Por ejemplo, dadas tres frutas, digamos una manzana, una naranja y una pera, hay tres combinaciones de dos que pueden extraerse de este conjunto: una manzana y una pera; una manzana y una naranja; o una pera y una naranja.
Las combinaciones se refieren a la combinación de n cosas tomadas k a la vez sin repetición. Para referirse a las combinaciones en las que se permite la repetición, se suelen utilizar los términos k-selección,[1] k-multiset,[2] o k-combinación con repetición[3] Si, en el ejemplo anterior, fuera posible tener dos de cualquier tipo de fruta, habría otras 3 2-selecciones: una con dos manzanas, otra con dos naranjas y otra con dos peras.
Aunque el conjunto de tres frutas era lo suficientemente pequeño como para escribir una lista completa de combinaciones, esto se vuelve poco práctico a medida que aumenta el tamaño del conjunto. Por ejemplo, una mano de póquer puede describirse como una combinación de 5 cartas (k = 5) de una baraja de 52 cartas (n = 52). Las 5 cartas de la mano son todas distintas, y el orden de las cartas en la mano no importa. Hay 2.598.960 combinaciones de este tipo, y la probabilidad de sacar una mano cualquiera al azar es de 1 / 2.598.960.

Acerca del autor

admin

Ver todos los artículos